首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1395篇
  免费   67篇
  国内免费   2篇
  2023年   4篇
  2022年   4篇
  2021年   27篇
  2020年   17篇
  2019年   16篇
  2018年   29篇
  2017年   27篇
  2016年   31篇
  2015年   67篇
  2014年   72篇
  2013年   82篇
  2012年   119篇
  2011年   101篇
  2010年   65篇
  2009年   52篇
  2008年   85篇
  2007年   87篇
  2006年   68篇
  2005年   79篇
  2004年   65篇
  2003年   54篇
  2002年   58篇
  2001年   31篇
  2000年   28篇
  1999年   16篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1992年   7篇
  1990年   9篇
  1989年   11篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   8篇
  1983年   4篇
  1979年   6篇
  1978年   5篇
  1977年   7篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   5篇
  1969年   4篇
  1968年   8篇
  1967年   5篇
  1966年   6篇
排序方式: 共有1464条查询结果,搜索用时 361 毫秒
951.
Qin A  Cheng TS  Lin Z  Cao L  Chim SM  Pavlos NJ  Xu J  Zheng MH  Dai KR 《PloS one》2012,7(4):e34132
Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.  相似文献   
952.
Yoo DE  Park JT  Oh HJ  Kim SJ  Lee MJ  Shin DH  Han SH  Yoo TH  Choi KH  Kang SW 《PloS one》2012,7(1):e30072

Background

The effect of glycemic control after starting peritoneal dialysis (PD) on the survival of diabetic PD patients has largely been unexplored, especially in Asian population.

Methods

We conducted a prospective observational study, in which 140 incident PD patients with diabetes were recruited. Patients were divided into tertiles according to the means of quarterly HbA1C levels measured during the first year after starting PD. We examined the association between HbA1C and all-cause mortality using Cox proportional hazards models.

Results

The mean age was 58.7 years, 59.3% were male, and the mean follow-up duration was 3.5 years (range 0.4–9.5 years). The mean HbA1C levels were 6.3%, 7.1%, and 8.5% in the 1st, 2nd, and 3rd tertiles, respectively. Compared to the 1st tertile, the all-cause mortality rates were higher in the 2nd [hazard ratio (HR), 4.16; 95% confidence interval (CI), 0.91–18.94; p = 0.065] and significantly higher in the 3rd (HR, 13.16; 95% CI, 2.67–64.92; p = 0.002) tertiles (p for trend = 0.005), after adjusting for confounding factors. Cardiovascular mortality, however, did not differ significantly among the tertiles (p for trend = 0.682). In contrast, non-cardiovascular deaths, most of which were caused by infection, were more frequent in the 2nd (HR, 7.67; 95% CI, 0.68–86.37; p = 0.099) and the 3rd (HR, 51.24; 95% CI, 3.85–681.35; p = 0.003) tertiles than the 1st tertile (p for trend = 0.007).

Conclusions

Poor glycemic control is associated with high mortality rates in diabetic PD patients, suggesting that better glycemic control may improve the outcomes of these patients.  相似文献   
953.
Synaptic degeneration is one of the earliest hallmarks of Alzheimer disease (AD) and results in loss of cognitive function. One of the causative agents for the synaptic degeneration is the amyloid β-peptide (Aβ), which is formed from its precursor protein by two sequential cleavages mediated by β- and γ-secretase. We have earlier shown that γ-secretase activity is enriched in synaptic compartments, suggesting that the synaptotoxic Aβ is produced locally. Proteins that interact with γ-secretase at the synapse and regulate the production of Aβ can therefore be potential therapeutic targets. We used a recently developed affinity purification approach to identify γ-secretase associated proteins (GSAPs) in synaptic membranes and synaptic vesicles prepared from rat brain. Liquid chromatography-tandem mass spectrometry analysis of the affinity purified samples revealed the known γ-secretase components presenilin-1, nicastrin and Aph-1b along with a number of novel potential GSAPs. To investigate the effect of these GSAPs on APP processing, we performed siRNA experiments to knock down the expression of the GSAPs and measured the Aβ levels. Silencing of NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 (NDUFS7) resulted in a decrease in Aβ levels whereas silencing of tubulin polymerization promoting protein (TPPP) resulted in an increase in Aβ levels. Treatment with γ-secretase inhibitors often results in Notch-related side effects and therefore we also studied the effect of the siRNAs on Notch processing. Interestingly, silencing of TPPP or NDUFS7 did not affect cleavage of Notch. We also studied the expression of TPPP and NDUFS7 in control and AD brain and found NDUFS7 to be highly expressed in vulnerable neurons such as pyramidal neurons in the hippocampus, whereas TPPP was found to accumulate in intraneuronal granules and fibrous structures in hippocampus from AD cases. In summary, we here report on two proteins, TPPP and NDUFS7, which interact with γ-secretase and alter the Aβ levels without affecting Notch cleavage.  相似文献   
954.
Postnatal development of the cerebellum lasts for weeks in rodents and can be disturbed by systemic 5-bromo-2'-deoxyuridine (BrdU) administration. This thymidine analogue incorporates into the DNA of proliferating cells, and result in more or less serious damage or death granule cells, the most actively dividing neuronal population in the developing cerebellar cortex. Further consequences of postnatal BrdU administration are the interrupted postnatal migration and integrations as well as partial loss of cerebellar Purkinje cells. In the present study, C57B16 mice were administered with 50 μg/g body weight BrdU, one sc. injection daily, between P0 and P11 postnatal days, respectively.Large "cavities" appeared in the cytoplasm of a subpopulation of Purkinje cells by P7 in about one-third of administered animals, their number are size of the cavities (and PCs exhibiting unusual morphology) decreased. EM studies revealed that the unusual Purkinje cells received numerous axonal inputs of unknown origin, first of all on their somatic and dendritic spines. The transitory appearance of a subpopulation of Purkinje cells possessing unusual morphology refers to the influence of other (neuronal, glial, or both) cells on their regular differentiation.  相似文献   
955.
956.
AMP-activated protein kinase (AMPK) is a critical monitor of cellular energy status and also controls processes related to tumor development, including cell cycle progression, protein synthesis, cell growth and survival. Therefore AMPK as an anti-cancer target has received intensive attention recently. It has been reported that the anti-diabetic drug metformin and some natural compounds, such as quercetin, genistein, capsaicin and green tea polyphenol epigallocatechin gallate (EGCG), can activate AMPK and inhibit cancer cell growth. Indeed, natural products have been the most productive source of leads for the development of anti-cancer drugs but perceived disadvantages, such as low bioavailability and week potency, have limited their development and use in the clinic. In this study we demonstrated that synthetic EGCG analogs 4 and 6 were more potent AMPK activators than metformin and EGCG. Activation of AMPK by these EGCG analogs resulted in inhibition of cell proliferation, up-regulation of the cyclin-dependent kinase inhibitor p21, down-regulation of mTOR pathway, and suppression of stem cell population in human breast cancer cells. Our findings suggest that novel potent and specific AMPK activators can be discovered from natural and synthetic sources that have potential to be used for anti-cancer therapy in the clinic.  相似文献   
957.
The ubiquitin-26S proteasome system is important in the quality control of intracellular proteins. The ubiquitin-26S proteasome system includes the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes. U-box proteins are a derived version of RING-finger domains, which have E3 enzyme activity. Here, we present the isolation of a novel U-box protein, U-box containing E3 ligase induced by phosphate starvation (OsUPS), from rice (Oryza sativa). The cDNA encoding the O. sativa U-box protein (OsUPS) comprises 1338 bp, with an open reading frame of 445 amino acids. The amino acid sequence of OsUPS cDNA shows 41–79% identity with other plant U-box homologous genes. The open reading frame of the OsUPS protein is comprised of notable domains: a single ~70-amino acid domain and a GKL domain that contains conserved glycine, lysine/arginine residues and leucine-rich feature. We found that full-length expression of OsUPS was up-regulated in both rice plants and cell culture in the absence of inorganic phosphate (Pi). A self-ubiquitination assay indicated that the bacterially expressed OsUPS protein had E3 ligase activity, and subcellular localization results showed that OsUPS was located in the chloroplast. These results support the notion that OsUPS plays an important role in the Pi signaling pathway through the ubiquitin-26S proteasome system.  相似文献   
958.
Background: Nontoxic heat shock protein (HSP) inducer compounds open up promising therapeutic possibilities by activating one of the natural and highly conserved defense mechanisms of the organism. Aims: In the present experiments, we examined the effects of a HSP coinducer drug-candidate, BRX-220, on the cholecystokinin-octapeptide (CCK)-induced acute pancreatitis in rats. Methods: Male Wistar rats weighing 240 to 270 g were divided into two groups. In group B, 20 mg/kg BRX-220 was administered orally, followed by 75 μg/kg CCK subcutaneously three times, after 1, 3, and 5 h. This whole procedure was repeated for 5 d. The aminals in group B received physiological saline orally instead of BRX-220, but otherwise the protocol was the same as in group B. The rats were exsanguinated through the abdominal aorta 12 h after the last administration of CCK. We determined the serum amylase activity, the plasma trypsinogen activation peptide concentration, the pancreatic weight/body weight ratio, the DNA and total protein contents of the pancreas, the levels of pancreatic HSP60 and HSP72, the activities of pancreatic amylase, lipase, trypsinogen, and free radical scavenger enzymes (superoxide dismutase, catalase, and glutathione peroxidase), the degree of lipid peroxidation, protein oxidation, and the reduced glutathione level. Histopathological investigation of the pancreas was also performed in all cases. Results: Repeated CCK treatment resulted in the typical laboratory and morphological changes of experimentally induced pancreatitis. The pancreatic levels of HSP60 and HSP72 were significantly increased in the animals treated with BRX-220. In group B, the pancreatic total protein content and the amylase and trypsinogen activities were significantly higher vs. group B. The plasma trypsinogen activation peptide concentration, and the pancreatic lipid peroxidation, protein oxidation, and the activity of Cu/Zn-superoxide dismutase were significantly decreased in group B vs. group B, whereas the glutathione peroxidase activity was increased. The morphological damage in group B was significantly lower than that in group B. Conclusion: The HSP coinducer BRX-220, administered for 5 d, has a protective effect against CCK-induced acute pancreatitis.  相似文献   
959.

Background

We evaluated the association of regular physical exercise with the presence of non-alcoholic fatty liver disease (NAFLD) and liver enzymes in relation to obesity and insulin resistance.

Methodology/Principal Findings

A cross-sectional analysis was conducted in 72,359 healthy Korean adults without diabetes who participated in a comprehensive health check-up. Subjects who have been exercising regularly (more than 3 times per week, at least for 30 minutes each time and for consecutive 3 month) were categorized into exercise group. All subjects were categorized into deciles based on their body mass index (BMI) and we estimated the odds ratios (ORs) for having NAFLD according to exercise regularity in each decile. The diagnosis of NAFLD was based on ultrasonography findings. Individuals with NAFLD (n = 19,921) were analyzed separately to evaluate ORs for having elevated liver enzymes based on regularity of exercise. The risk for NAFLD was significantly reduced in exercise group with age- and sex-adjusted ORs of 0.53–0.72 for all BMI deciles except at BMI categories of <19.6 and 20.7–21.6 kg/m2. While no difference was seen in BMI between subjects in exercise and non-exercise group across the BMI deciles, the values of body fat percentage and metabolic risk factors differed. Among NAFLD patients, subjects in exercise group had a lower risk for having elevated liver enzymes with multivariable adjusted OR of 0.85 (95% CI 0.74–0.99, for AST) and 0.74 (95% CI 0.67–0.81, for ALT) than did subjects in non-exercise group.

Conclusions/Significance

Regular exercise was associated with a reduced risk for having NAFLD and decreased liver enzymes in patients with NAFLD, and this relationship was also independent of obesity.  相似文献   
960.
Dectin-1 (CLEC7A) is a C-type lectin receptor that binds to β-glucans found in fungal cell walls to act as a major pattern recognition receptor (PRR). Since β-glucans epitope is not present in human cells, we are of the opinion that Dectin-1 can have therapeutic functions against fungal infections. We thus set out to produce a soluble extracellular domain of murine Dectin-1 (called sDectin-1) in sufficient titers to facilitate such studies in mouse models. Since sDectin-1 has previously been shown to be glycosylated, we chose to produce this protein using Chinese Hamster Ovary (CHO) cells, a mammalian host cell line suitable for the high-titer production of recombinant glycoproteins. To ensure a high titer production of sDectin-1 and minimize the effects of gene fragmentation, we constructed a mammalian expression vector with a PEST-destabilized dhfr amplifiable marker downstream of an attenuated IRES element, which was in turn downstream of the sDectin-1 gene and a CMV IE promoter. Stably transfected and MTX-amplified cell pools were generated using this vector, and maximum sDectin-1 titers of 246 mg/l and 598 mg/l were obtained in shake flask batch culture and bioreactor fed-batch culture respectively. The purified recombinant sDectin-1 was shown to be glycosylated. Protein functionality was also demonstrated by its ability to bind to zymosan particles and to the cell wall of Saccharomyces cerevisiae. We describe for the first time the use of an attenuated IRES-linked PEST-destabilized dhfr amplifiable marker for the production of recombinant proteins with stably amplified cell pools. With our process, we reached the highest reported titer for producing recombinant proteins smaller than 50 kDa in cell pools. sDectin-1 protein produced is glycosylated and functional. This vector design can thus be used efficiently for the high-titer production of functional recombinant proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号